

FIRE FIGHTING EQUIPMENT

part one

INDEX

Introduction	3
Technical information	4
Foam mixers	9
Positive displacement	10
Bladder tanks	12
Balanced pressure	21
Wide range	23
Small capacity	24
Monitors	25
Cast body	26
General performance specification	27
Welded body	28
Monitor nozzles	34
Monitor lances	

TECHNICAL PUBLICATIONS

PNR manufactures a complete range of spray nozzles for industrial applications and many other products and systems designed according to the latest cutting-edge technologies. All our products are described in the following catalogues:

PRODUCT RANGE	CTGTV
GENERAL PURPOSE SPRAY NOZZLES	CTG UG
AIR ASSISTED ATOMIZERS	CTGAZ
COMPLEMENTARY PRODUCTS AND ASSEMBLY FITTINGS	CTGAC
INDUSTRIAL TANK WASHING SYSTEMS	CTGLS
PAPER MILL PRODUCTS	CTGPM
STEELWORK NOZZLES	CTGSW
SPRAYDRY NOZZLES	CTGSD
FIREFIGHTING PRODUCTS AND SISTEMS	FF

Our technical literature is continuously revised and updated and sent to our Customers who are listed in our Catalogues Delivery List. If you are interested in receiving the latest version of our catalogues, please contact the nearest PNR office.

WAIVER OF RESPONSABILITY

The information contained herein is provided "as is" and PNR does not guarantee the correctness and accuracy of the same. This publication may contain technical inaccuracies or typographical errors. It may also be subject to periodic changes without prior notice.

INTRODUCTION

Pnr activity was started in 1968 for the production of components in the field of fire fighting system, and since then the Company has been working on the Italian market, serving the main Italian companies building complete fire fighting systems.

Since the early days our product range has been enlarged and modified according to the market requests and the incredible advances in the manufacturing technologies which have been possible along the years.

Today Pnr has become one of the players on the world market regarding spray nozzles for industrial processes, while the fire fighting product line has undergone improvements and modifications to adapt for market requests.

Today our product range for fire fighting includes the following

A complete line of products in the field of foam based systems.

Here our customers find literally everything which is required to build a foam based system, from the foam agent tank to the most advanced types of monitors.

All our equipment, parts and machines, incorporate more than 40 years of field experience in the most important Italian refineries, where many engineers only accept our products.

A complete line for hydraulic spray nozzles

In this field our deep knowledge of the product, together with one of the largest laboratories in Europe for nozzle testing puts us miles ahead of other competitors.

A new line of watermist nozzles

In these field, where such nozzles are rapidly finding enthusiastic consent in the trade, we can proudly pretend to be at the forefront of the technology thanks to a machine tool park unequalled in the world.

This catalog covers only the main products used to assemble large foam system as used in oil refineris and petrochemical industries. An additional catalog covers the rest of the product mentioned above.

Description

The **INTERNATIONAL SYSTEM OF UNITS** sometimes called SI, has been defined by the International Standards Organization (ISO) and is based upon metric units. The following notes include most units which are likely to be used in handing of fluids. The system consists of nine base units, and supplementary units which are coherently derived from them. The coherence consists in the fact that the product, or the quotient of any two unit quantities in the system result in another unit quantity. Because of the world wide trend to use this modern metric system, we are providing in the following the conversion constants for the most useful units.

Base Units and derived units

The SI has defined the following base unit:

N°	QUANTITY UNIT	NAME UNIT	SYMBOL	
1	Length	meter	m	
2	Mass	kilogram	kg	
3	Time	second	S	
4	Thermodynamic temperature	Kelvin	K	
5	Molecular substance	mole	mol	
6	Electric current	Ampere	А	
7	Light intensity	candela	cd	
8	Plane angle	radiante	rad	
9	Solid angle	steradian	sr	

Out of these base units many other have been derived, the most interesting for our purposes being listed below.

N°	QUANTITY UNIT	NAME UNIT	SYMBOL	EQUIVALENCES
10	Area	square meter	m ²	
11	Volume	cubic meter	m ³	
12	Density	kilogram per cubic meter	Kg/m ³	
13	Velocity	meter per second	m/s	
14	Acceleration	meter per second squared	m/s ²	
15	Angular velocity	radian per second	rad /s	
16	Frequency	Hertz	Hz	Hz = cicli / s
17	Force	Newton	Ν	$N = kg \cdot m/s^2$
18	Pressure	Pascal	Pa	Pa = N/m ²
19	Momentum	kilogram meter per second	Kg m/s	
20	Energy	Joule	J	$J = N \cdot m$
21	Power	Watt	W	W = J/s
22	Moment of force	Newton meter	N m	
23	Kinematic viscosity	square meter per second m²/s		
24	Dynamic Viscosity	Pascal second Pa s		
25	Thermal conductivity	Watt per meter Kelvin	W (m · K)	

62

72

പ

In the following pages some technical information from our spray engineering handbook. This booklet can be obtained free of charge from any Pnr company or Pnr distributor.

INTERNATIONAL SYSTEM OF UNITS	bage 5
PNR MATERIAL CODING	bage 6
CONVERSION TABLES BETWEEN ISO AND AMERICAN UNITS	page 6
TEMPERATURE CONVESION SCALES	page 7
FRACTIONS OF AN INCH	page 8
	0

NG

PNR material coding

Pnr coding system has been organized so that the complete specification of a single product can be understood from the product code.

Within product codes, construction materials are coded in the following way.

IRON ALLOYS SUPERALLOYS		YS	OTHERS		POLYMERS AND ELAS	TOMERS	
A1: Carbon steel		H1: Titanium Gr 2	(3.7035)	F1: Tungsten carbio	de	D1: Polivinylchloride	PVC
A7: Chrome plated	d steel	L1: Monel 400		F2: Glass		D2: Polipropylen	PP
A8: Zinc plated st	eel	L2: Incoloy 825	(2.4858)	F3: Ruby		D3: Nylon	PA
A8: Nickel plated	steel	L21: Alloy 600	(2.4816)	F4: Sapphire		D4: Plastic	ABS
B1: AISI 303	(1.4305)	L22: Alloy 625		F5: Ceramic		D5: PP + powder	TRPP
B2: AISI 304	(1.4301)	L23: Incoloy 800	(1.4958)	F6: Silicon carbide		D6: PP + glass fiber	GFRPP
B3: AISI 316	(1.4401)	L3: Nicrofer 5923	(2.4605)	T1: Brass	(2.0401)	D7: High density PE	HDPE
B31: AISI 316L	(1.4404)	L4: Stellite 6		T3: Copper	(2.0100)	D71: Poliethylen	PE
B4: AISI 321	(1.4541)	L5: Hastelloy B2	(2.4617)	T5: Bronze	(2.1010)		
B5: AISI 430F	(1.4104)	L6: Hastelloy C4	(2.4610)	T8: Nickel plated bi	rass		
B8: AISI 309	(1.4828)	L61: Hast. C22	(2.4602)	V1: AL 5076		D8: Plastic	PVDF
C1: AISI 420	(1.4034)	L62: Ultimet	(2.4681)	V11: AL 6060		D9: Plastic	PEEK
C2: AISI 416	(1.4005)	L7: Alloy 201	(2.4061)	V3: Zinc alloy		E1: Teflon	PTFE
C6: SAF 2205	(1.4462)	L71: Alloy 200	(2.4060)	V5: Lead		E3: Plastic	POM
C7: AISI 316Ti	(1.4571)	L8: Hast. C276	(2.4819)			E6: Plexiglass	PMMA
N1: AISI 302	(1.4320)	L9: Sanicro 28	(1.4563)				
N2: AISI 631	(1.4568)	L91: Alloy 31	(1.4562)			E7: Viton	FPM
G1: Cast iron	(1.1691)	N7: Inconel X750	(2.4669)			E8: Syntetic rubber	NBR

Conversion table: American units to Si units

QUANTITY	AMERICAN UNIT	CONVERSION FACTOR	SI UNIT
DENSITY	Pound mass/cubic feet	16.018	kilograms/cubic meter
FLOW RATE	Gallons per minute	3.785	liters per minute (lpm)
FLUID VOLUME	US Gallon	3.785	liter (I)
FORCE	Pound force	4.448	Newton (N)
HEAT	BTU (British Thermal Unit)	1055	Joule (J)
HEAT TRANSFER	BTU per hour	0.2931	Watt (W)
SPECIFIC HEAT CAPACITY	BTU per pound*deg F	4184	Joule / (kg K)
LENGHT	mil	25.4	Micrometer (micron)
LENGHT	Inches	25.4	millimeters (mm)
LENGHT	Foot	0.3048	meter (m)
POWER	Horsepower	0.746	kilowatt (kW)
PRESSURE	Pounds per square inch	0.0689	bar (1 bar = 100 kPa)
CALORIC VALUE ENTALPY	BTU per pound	2326	Joule per kg
SPECIFIC WEIGHT	Lbs per gallon	0.1198	kg per liter (kg/l)
SURFACE	Square inch	6,4516	square centimeter (cm2)
SURFACE	Square foot	0,0929	square meter (m2)
SURFACE	Acre	0,4047	hectares (ha)
VELOCITY	Foot per second	0.3048	meters per second (m/sec)
VELOCITY	Foot per minute	0.3048	meters per minute (m/min)
VELOCITY	Miles per hours	1.609	kilometers per hour (km/h)
VELOCITY	Knots	1.852	kilometers per hour (km/h)
VOLUME	Cubic foot	0.0283	cubic meter (m3)
VOLUME	Cubic inch	16.387	cubic centimeter (cm3)
WEIGHT	Pound	0.4536	kilogram (kg)
WEIGHT	Ton	0.90272	metric ton (t)

Multiply American Units on the left Divide SI Units on the right (by the conversion factor) (by the conversion factor) to obtain SI Units on the right. to obtain American Units on the left.

GENERAL INFORMATION

Conversion table: temperature scales

There are 4 principal types of temperature scales used for indicate the temperature: CENTIGRADE CELSIUS, FAHRENHEIT, KELVIN, and RANKINE; Kelvin and Celsius scales are used in Europe, Rankine, Fahrenheit are used in Anglo-Saxons countries.

MP = water melting point **BP** = water boiling point

SYMBOL	NAME	MP	BP	NOTES
°C	Centigrade	0	100	0 and 100 are arbitrarily placed at the freezing point and boiling point of water.
°F	Fahrenheit	32	212	0°F is the stabilized temperature when equal amounts of ice, water, and salt are mixed. 96°F is the temperature "when the thermometer is held in the mouth or under the armpit of a living man in good health."
°K	Kelvin	273.16	373.16	Based upon the definitions of the Centigrade scale and the experimental evidence that absolute zero is -273,16° C and that is an international standard temperature point.
°R	Rankine	491.67	671.67	Based upon the definitions of the Fahrenheit scale and the experimental evidence that absolute zero is -273,16° C

CONVERSION FORMULAE TABLE							
	CELSIUS FAHRENHEIT KELVIN RANKINE						
°C=	-	<u>°F - 32</u> 1,8	K - 273,16	R 1,8 - 273,16			
°F=	1,8 °C + 32		1,8 [.] K - 459,69	R - 459,69			
K=	°C + 273,16	<u>°F - 32</u> + 273,16	-	R 1,8			
°R=	1,8 (°C + 273,16)	°F + 459,67	1,8·K	-			

°C	°F]	°C	°F	
-10	14]	19	66,2	
-8	17,6]	20	68	
-6	21,2]	21	69,8	
-4	24,8]	22	71,6	
-2	28,4]	23	73,4	1
0	32]	24	75,2	1
1	33,8]	25	77	1
2	35,6]	26	78,8	1
3	37,4]	27	80,6	1
4	39,2		28	82,4	1
5	41		29	84,2	1
6	42,8		30	86	1
7	44,6		31	87,8	1
8	46,4		32	89,6	
9	48,2		33	91,4	1
10	50		34	93,2	1
11	51,8		35	95	
12	53,6		36	96,8]
13	55,4		37	98,6]
14	57,2		38	100,4]
15	59		39	102,2	
16	60,8		40	104	
17	62,6		41	105,8	
18	64,4		42	107,6]

°F	°C	°F
109,4	67	152,6
111,2	68	154,4
113	69	156,2
114,8	70	158
116,6	71	159,8
118,4	72	161,6
120,2	73	163,4
122	74	165,2
123,8	75	167
125,6	76	168,8
127,4	77	170,6
129,2	78	172,4
131	79	174,2
132,8	80	176
134,6	81	177,8
136,4	82	179,6
138,2	83	181,4
140	84	183,2
141,8	85	185
143,6	86	186,8
145,4	87	188,6
147,2	88	190,4
149	89	192,2
150,8	90	194

°C	°F
91	195,8
92	197,6
93	199,4
94	201,2
95	203
96	204,8
97	206,6
98	208,4
99	210,2
100	212
105	221
110	230
115	239
120	248
125	257
130	266
135	275
140	284
145	293
150	302
160	320
170	338
180	356
190	374

Q

GENERAL INFORMATION

Metric and decimal equivalents of fractions of an inch

FOAM MIXERS

BALANCED PRESSURE

PAG. 2

	1 1	
		l
	 1 1	

mm			FRACTIONS	OF ONE INCH			INCHES
0,3969						1/64	0,015625
0,79375					1/32		0,03125
1,1906				1/16		3/64	0,04687
1,5875							0,0625
1,9844						5/64	0,078125
2,38125					3/32		0,09375
2,7781						7/64	0,109375
3,1750			1/8				0,125
3,5719						9/64	0,14062
3,96875					5/32		0,15625
4,3656						11/64	0,171875
4,7525				3/16		13/64	0,1875
5,1594							0,203125
5,55625					7/32		0,21875
5,9531						15/64	0,234375
6,3500		1/4					0,25
6,7469						17/64	0,265625
7,14375					9/32		0,28125
7,5406						19/64	0,29687
7,9375				5/16			0,3125
8,3344						21/64	0,328125
8,73125					11/32		0,34375
9,1281	· · · · · · · · · · · · · · · · · · ·					23/64	0,359375
9,5250			3/8				0,375
9,9219						25/64	0,390625
10,31875					13/32		0,40625
10,7156						27/64	0,42187
11,1125				7/16			0,4375
11,5094						29/64	0,453125
11,90625					15/32		0,46875
12,3031						31/64	0,484375
12,7000	1/2						0.5
13,0969						33/64	0,515625
13,49375					17/32		0,53125
13,8906						35/64	0,54687
14,2875				9/16			0,5625
14,6844						37/64	0,578125
15,08125					19/32		0,59375
15,4781						39/64	0,609375
15.8750			5/8				0.625
16.2719						41/64	0.64062
16.66875					21/32		0.65625
17.0656			1			43/64	0.67187
17.4625			1	11/16			0.6875
17.8594			1	1,1,10		45/64	0.703125
18.25625					23/32		0.71875
18.6531			1			47/64	0 73437
19,0500		3/4					0.75
19,4469		0/ -				49/64	0 765624
19 84375					25/32	FO/ 0-T	0.78125
20.2406					20/02	51/6/	0,70123
20,6375			+	13/16		51/04	0,730070
21 0344				10/10		53/6/	0,0123
21 / 21 25					27/20	30/04	0,020120
21 8280			+		21/02	55/6/	0,04375
22 2250			7/0			33/04	0,00937
22,2200			1/0			ETICA	0,070
22,0219					00/00	37/04	0,09002
23,018/5		+			29/32	E0/04	0,90625
23,4150		+		45/40		59/64	0,9218/5
23,0125				01/01		61/04	0,93/5
24,2094					01/00	01/64	0,953125
24,60625		-			31/32		0,96875
25 0031						63/64	0,984375

www.pnr-nozzles.com

POSITIVE DISPLACEMENT

PAG. 10

BLADDER TANKS

WIDE RANGE

2

~_

 $\widehat{}$

Tipical performance [%] CONCENTRATION 12 FOAM (488 FOAM FLOW-RATE [% of Qn] ------

This is the most modern and precise type of proportioning equipment for large stationary systems, where it is required to maintain a stock of foaming agent available.

These machines have been developed to overcome limitations and disadvantages coming from the operation of bladder tanks, that is the following:

- · Limited operation time, once used the foaming agent in the bladder tank the tank needs refilling
- Limited range of precise proportioning, typically lower than 1:5 in capacity range
- · Costly and complicated maintenance, especially if tank placed inside a building

The machine concept is very simple, consisting in two volumetric (screw) pumps, the bigger one working as a motor makes use of the main water line pressure to rotate the smaller one, which injects the foaming agent under pressure into the main water line.

With this design the machine is self-powered and does not need any kind of additional energy.

A three way valve allows for the foam agent being injected in the main water line or alternatively being sent back to the foam agent tank when testing the system.

The mechanical (elastic) coupling between the two machines, which pump a precise liquid volume at each turn, assures a constant and precise proportioning for any given capacity value, in an operating range well over 1:10, which is unparalleled in the whole world market.

The sturdiness of the system and the very strong design of screw pumps assure the highest reliability year over year, even when the system is tested in operation every month.

In addition these machines assure the following advantages:

- System can work for unlimited time, foaming agent being supplied from any atmospheric pressure container, like trucks or even 200 litre barrels
- System works fine even at very little load, e.g. using one only monitor out of a group
- In a large plant one only foam agent stock can be built in a central location serving all systems
- · Workers can supply foam agent away from the fire area, with lower risks
- The system is compliant with NFPA 11
- The machine can work with sea water

Materials

The materials used are resistant to the most common foam agents and allow the machine to be flushed with sweet water after testing.

Drive motor

Body
Idle rotor
Drive rotor

Rotors

Epoxy coated cast iron / Full bronze on small sizes Bronze Cr Stainless steel

Injection pump Body

Cast iron GG25 with internal Teflon / Graphite coating Cr Stainless steel

These materials allow for operation with both sweet and sea water

CTG FF10 IT

FOAM MIXERS Positive displacement

Code	Pump Size	Pump Pump Dimensions Size								Suction Flange Foamer		Suction and Discharga Flange Water				
	*	В	С	C1	C2	C5	C7	Е	H1	H2	H4	DN	PN	150	RS	DN
TFW 1203 G4SE	120.3	320	892	55	782	115	370	1115	316	358	574	100	16	4"	SAE 1 1/4"	32
TFW 1206 G4SE	120.6	320	925	55	815	115	370	1155	316	358	574	100	16	4"	SAE 1 1/4"	32
TFW 1503 G4SE	150.3	370	994	60	874	135	420	1249	371	403	615	125	16	5"	SAE 1 1/4"	32
TFW 1506 G4SE	150.6	370	1071	60	951	135	420	1310	371	403	615	125	16	5"	SAE 1 1/2"	40
TFW 2403 G4SE	240.3	400	1079	60	959	155	420	1350	383	423	615	150	16	6"	SAE 1 1/4"	32
TFW 2406 G4SE	240.6	400	1215	60	1095	155	420	1476	383	433	615	150	16	6"	SAE 2"	50
TFW 3003 G4SE	300.3	440	1222	60	1102	170	460	1449	423	443	700	150	16	6"	SAE 1 1/2"	40
TFW 3006 G4SE	300.6	440	1281	60	1161	170	460	1564	423	453	700	150	16	6"	SAE 2"	50
TFW 3603 G4SE	360.3	460	1311	70	1171	180	460	1604	423	468	820	200	16	8"	SAE 2"	50
TFW 3606 G4SE	360.6	460	1330	70	1190	180	460	1674	423	478	820	200	16	8"	SAE 2 1/2"	65
TFW 4503 G4SE	450.3	480	1401	70	1261	195	500	1720	458	503	820	200	16	8"	SAE 2"	50
TFW 4506 G4SE	450.6	480	1420	70	1280	195	500	1790	458	513	820	200	16	8"	SAE 2 1/2"	65
TFW 6003 G4SE	600.3	520	1484	70	1644	210	550	1887	483	553	850	250	16	10"	SAE 2 1/2"	65
TFW 6006 G4SE	600.6	520	1556	70	1426	210	550	1955	483	563	850	250	16	10"	SAE 3"	80
TFW 7503 G4SE	750.3	550	1500	70	1360	210	550	1914	478	568	850	300	16	12"	SAE 2 1/2"	65
TFW 7506 G4SE	750.6	550	1662	70	1522	210	550	2067	478	593	850	300	16	12"	SAE 4"	100
TFW 9003 G4SE	900.3	740	1657	75	1507	245	680	2104	633	688	880	300	16	12"	SAE 2 1/2"	65
TFW 9006 G4SE	900.6	740	1819	75	1669	245	680	2257	633	703	880	300	16	12"	SAE 4"	100

* Pump size

The pump size figure shows both the maximum capacity and the mix percentage, eg: 120.3 = maximum capacity 120 cubic metres per hour (minimum capacity 12 cubic metres per hour) and mix percentage 3%

SUCTION FLANGE FOAM

BLADDER TANKS

62

<u>---</u>

Pnr offers a very complete range of bladder tanks in several sizes and different types, including small size and wall mounted devices.

VERTICAL, WITHOUT OR WITH FOAM MIXER

HORIZONTAL, WITHOUT **OR WITH FOAM MIXER**

WALL-MOUNT TANKS

BLADDER TANKS

Pnr offers a very complete range of bladder tanks, built in thousands of units and fully tested in hundreds of sites. Our long experience in the construction of professional fire fighting equipment allows us to offer the highest quality on the market today, and what most matters, a reliable solution to all of your design problems.

Basic features

Construction code

CEE 97/23 PED EN 13445-3 ED 2002 issue 32

Construction materials

Tanks Pipes Flanges Cut-off ball valves Other valves Pressure gauges Safety valve Bladder Coating Packing

P355NH EN 10028-3 / ASTM A 516 Gr 70 ASTM A 106 Gr. B ASTM A 105 Carbon steel body, AISI 316 balls Nickel plated brass Stainless steel body Brass Hypalon / Neoprene Epoxy paint, RAL 3000 On wooden pallet

Quality features

In addition to the high quality of all the materials used to build our tanks we also supply them with our specially made bladder, which has the collar for tank connection cast in one piece, so as to be able to hold internal pressure for long time without any fluid loss.

On request specifications

Construction according to ASME codes. Construction on customer specified pressure. Welding check through dye penetration or X-ray. Performance test on factory proving ground and manufacturer certificate.

Documents delivered with our tanks

Warranty certificate. Hydraulic pressure test certificate. Operation and service manual, including filling instructions (available in Italian, English, French).

Documents available at our Offices All documents relating to products built according to the PED norms are available to any authorities at our Offices.

CTG FF10 IT

Q

BLADDER TANKS Bladder tanks functional schemes

BLADDER TANKS *Twin bladder tanks functional schemes*

1.	Stop valve
2.	Concentrate stop valve
3.	Drain valve, mixer
4.	Water vent valve
5.	Safety valve
6.	Vent valve
7.	Pressure gauge
8.	Foam diaphragm
9.	Check valve
10.	Pressure gauge, differential
11.	Drain valve, water
12.	Drain valve, level gauge
13.	Drain valve, concentrate (& filling valve)
14.	Cut-off valve, level gauge
15.	Level gauge

- 16. Water diaphragm
- 17. Bladder

We can design and quote any size of twin bladder tanks according to customer specification. Please ask our Offices or Distributors

1.	Stop valve
2.	Concentrate stop valve
3.	Drain valve, mixer
4.	Water vent valve
5.	Safety valve
6.	Vent valve
7.	Pressure gauge
8.	Foam diaphragm
9.	Check valve
10.	Pressure gauge, differential
11.	Drain valve, water
12.	Drain valve, level gauge
13.	Drain valve, concentrate (& filling valve)
14.	Cut-off valve, level gauge
15.	Level gauge
16.	Water diaphragm
17.	Bladder

T.

2

BLADDER TANKS

Vertical, without foam mixer

The tanks in this page are not fitted with the foam mixer, allowing the system designer to choose the most convenient layout for any specific case, the weight value shown in the table does not include therefore the mixer and its piping.

All our bladder tanks are built with the very best quality materials, as specified into the list of materials given at page 16.

Please consider that all given dimensions are understood with a plus/minus 4% tolerance.

The tanks in this page are delivered complete with the foam mixer, and therefore the weight value shown in the table does include the mixer and its piping.

All our bladder tanks are built with the very best quality materials, as specified into the list of materials given at page 16.

Please consider that the given dimensions relate to a 3" size mixer for capacities up to 600. 4" for capacities up to 2000 and 6 inch from 2.500 up (additional sizes also available). All dimensions understood with a plus/minus 4% tolerance.

Codo	Capacity	Α	В	С	D	E	F	G	н	w		
Code	litres	mm	mm	mm	mm	mm	mm	mm	mm	kg		
TTV 002M A4KE	200	915	500	500	600	580	700	335	1730	160		
TTV 004M A4KE	400	915	500	500	600	580	700	335	2280	180		
TTV 006M A4KE	600	1115	600	652	800	755	900	435	2160	210		
	1000	1005	710	700	1000				0005	200		
TTV OTOP A4LE	1000	1335	/10	700	1000	-	-	-	2295	320		
TTV 012P A4LE	1250	1335	710	760	1000	-	-	-	2595	356		
TTV 015P A4LE	1500	1335	710	760	1000	-	-	-	2975	386		
TTV 020P A4LE	2000	1435	760	830	1100	-	-	-	3235	573		
	0500	1500	a / =		1000				0005			
TTV 025R A4ME	2500	1530	845	920	1200	-	-	-	3365	810		
TTV 030R A4ME	3000	1790	945	1065	1400	-	-	-	3110	960		
TTV 035R A4ME	3500	1790	945	1065	1400	-	-	-	3610	1100		
TTV 040R A4ME	4000	1790	945	1065	1400	-	-	-	3760	1130		
TTV 045R A4ME	4500	1990	1045	1210	1600	-	-	-	3435	1280		
TTV 050R A4ME	5000	1990	1045	1210	1600	-	-	-	3685	1380		
	0000	0140	1100	1015	1750				0000	1000		
TTV 060R A4ME	6000	2140	1120	1315	1750	-	-	-	3800	1660		
TTV 070R A4ME	7000	2395	1250	1500	2000	-	-	-	3545	2010		
TTV 080R A4ME	8000	2395	1250	1500	2000	-	-	-	3890	2200		
TTV 090R A4ME	9000	2395	1250	1500	2000	-	-	-	4195	2350		
TTV 100R A4ME	10000	2395	1250	1500	2000	-	-	-	4540	2540		
TTV 120R A4ME	12000	2395	1250	1500	2000	-	-	-	5185	2880		

The above capacity values are only the most frequently supplied. We can of course quote on any desired capacity value required, maintaining the same quality.

62

<u>---</u>

Cada	Capacity	A	В	C	U U	E	L	VV
Code	litres	mm	mm	mm	mm	mm	mm	kg
TTV 0020 A4KE	200	1565	1400	500	600	580	240	155
TTV 0040 A4KE	400	2080	1915	500	600	580	260	175
TTV 0060 A4KE	600	2000	1835	652	800	755	280	200
TTV 0100 A4LE	1000	2070	1905	760	1000	-	300	316
TTV 0150 A4LE	1500	2710	2545	760	1000	-	300	376
TTV 0200 A4LE	2000	2865	2700	830	1100	-	300	563
TTV 0250 A4ME	2500	3115	2950	920	1200	-	400	800
TTV 0300 A4ME	3000	2861	2710	1065	1400	-	400	950
TTV 0350 A4ME	3500	3287	3137	1065	1400	-	400	1090
TTV 0400 A4ME	4000	3510	3360	1065	1400	-	400	1120
TTV 0450 A4ME	4500	3185	3035	1210	1600	-	400	1270
TTV 0500 A4ME	5000	3400	3250	1210	1600	-	400	1370
TTV 0600 A4ME	6000	3500	3350	1315	1750	-	500	1650
TTV 0700 A4ME	7000	3260	3110	1500	2000	-	500	2000
TTV 0800 A4ME	8000	3605	3455	1500	2000	-	500	2190
TTV 0900 A4ME	9000	3910	3760	1500	2000	-	500	2340
TTV 1000 A4ME	10000	4260	4110	1500	2000	-	500	2530
TTV 1200 A4ME	12000	4910	4760	1500	2000	-	500	2870

The above capacity values are only the most frequently supplied.

We can of course quote on any desired capacity value required, maintaining the same quality.

16

PNR

0.2

BLADDER TANKS

2

<u>---</u>

The tanks in this page are not fitted with the foam mixer, allowing the system designer to choose the most convenient layout for any specific case, the weight value shown in the table does not include therefore the mixer and its piping. All our bladder tanks are built with the very best quality materials, as specified into the list of materials given at page 16. Please consider that all given dimensions are understood with a plus/minus 4% tolerance.

Code	Capacity	Α	В	с	E	F	н	DIA	w
out	litres	mm	mm	mm	mm	mm	mm	mm	kg
TTH 0060 A4ME	600	600	500	730	1430	1500	120	600	330
TTH 0100 A4ME	1000	700	600	820	1650	1776	120	1000	550
TTH 0150 A4ME	1500	700	600	1360	1650	2426	120	1000	630
TTH 0200 A4ME	2000	800	700	1520	1755	2582	120	1100	755
TTH 0250 A4ME	2500	900	800	1560	1885	2715	150	1200	790
TTH 0300 A4ME	3000	1000	850	1600	2025	2062	150	1400	1040
TTH 0350 A4ME	3500	1000	850	1680	2090	2562	150	1400	1160
TTH 0400 A4ME	4000	1000	850	1770	2025	2712	150	1400	1215
TTH 0450 A4ME	4500	1100	950	1680	2220	2825	150	1600	1370
TTH 0500 A4ME	5000	1100	950	1680	2290	3075	200	1600	1490
TTH 0600 A4ME	6000	1200	1050	1680	2440	3170	200	1750	1910
TTH 0700 A4ME	7000	1500	1350	1250	2682	2902	250	2000	2165
TTH 0800 A4ME	8000	1500	1350	1600	2682	3252	250	2000	2440
TTH 0900 A4ME	9000	1500	1350	1900	2685	3552	250	2000	2700
TTH 1000 A4ME	10000	1500	1350	2250	2682	3902	250	2000	2875
TTH 1100 A4ME	11000	1500	1350	2550	2682	4202	250	2000	2940
TTH 1200 A4ME	12000	1500	1350	2900	2682	4552	250	2000	3060

The above capacity values are only the most frequently supplied.

We can of course quote on any desired capacity value required, maintaining the same quality.

BLADDER TANKS Horizontal, with foam mixer

The tanks in this page are fitted with the foam mixer, the weight value shown in the table does include therefore here the mixer and its piping.

All our bladder tanks are built with the very best quality materials, as specified into the list of materials given at page 16. Please consider that all given dimensions are understood with a plus/minus 4% tolerance. Please consider that the given dimensions relate to a 4" for capacities up to 2000 and 6 inch from 2.500 up (additional sizes also available).

Cada	Capacity	Α	В	С	E	F	н	DIA	I	L	w
Code	litres	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
TTH 006E A4ME	600	600	500	730	1560	1500	120	600	640	1135	336
TTH 010E A4ME	1000	700	600	820	1760	1776	120	1000	740	1335	560
TTH 015E A4ME	1500	700	600	1360	1760	2426	120	1000	740	1335	640
TTH 020E A4ME	2000	800	700	1520	1860	2582	120	1100	790	1435	765
TTH 025E A4ME	2500	900	800	1560	1960	2715	150	1200	875	1590	800
TTH 030E A4ME	3000	1000	850	1600	2175	2062	150	1400	925	1790	1050
TTH 035E A4ME	3500	1000	850	1680	2175	2562	150	1400	975	1790	1170
TTH 040E A4ME	4000	1000	850	1770	2175	2712	150	1400	1000	1790	1225
TTH 045E A4ME	4500	1100	950	1680	2370	2825	150	1600	1025	1990	1380
TTH 050E A4ME	5000	1100	950	1680	2370	3075	200	1600	1075	1990	1500
TTH 060E A4ME	6000	1200	1050	1680	2520	3170	200	1750	1150	2140	1920
TTH 070E A4ME	7000	1500	1350	1250	2770	2902	250	2000	1280	2395	2175
TTH 080E A4ME	8000	1500	1350	1600	2770	3252	250	2000	1280	2395	2450
TTH 090E A4ME	9000	1500	1350	1900	2770	3552	250	2000	1280	2395	2710
TTH 100E A4ME	10000	1500	1350	2250	2770	3902	250	2000	1280	2395	2885
TTH 110E A4ME	11000	1500	1350	2550	2770	4202	250	2000	1280	2395	2950
TTH 120E A4ME	12000	1500	1350	2900	2770	4552	250	2000	1280	2395	3070

The above capacity values are only the most frequently supplied. We can of course quote on any desired capacity value required, maintaining the same quality.

62

72

പ

The foam mixers shown in this page are delivered disassembled, and together with bladder tanks where the mixer is not built in, so as to leave the system installer the freedom of positioning it in the most convenient location.

Codo	D1	Capacity range	D2	Α	В	3%	6%	W
Code	inch	Ipm	Inch	mm	mm			kg
TFT 0653 A4LE	2+1/2	75 / 650	1+1/4	216	238	*	*	12
TFT 0803 A4LE	3"	100 / 900	1+1/2	216	244	*	*	16
TFT 0803 A4HE		150 / 1250				*	*	
TFT 1003 A4LE	4"	250 / 1800	1+1/2	216	257	*	*	22
TFT 1003 A4HE		380 / 2700	-	-	-	*	*	
TFT 1503 A4LE	6"	450 / 3500	2"	216	284	*	*	35
TFT 1503 A4HE		650 / 5500				*	*	
TFT 2003 A4LE	8"	1100 / 8000	2+1/2	256	310	*	*	45
TFT 2003 A4HE	10"	1680 / 11000	3"	300	336	*	*	65

Please note all these mixers have a maximum pressure drop of 1.0 bar over a 6x capacity range

www.pnr-nozzles.com

FOAM MIXER Balanced pressure proportioner

This mixer works balancing the pressure from water and foaming agent in order to assure a correct mixing ratio for different water pressure values, the device adjusts instantly the mixing ratio since the two pressure values are picked up from the water line and the foaming agent line and transferred into a balancing head at the top of the device. Therefore the stem of the inside regulation valve positions itself to assure the correct quantity of foaming agent to be injected into the water line, which happens in the low pressure area of the Venturi mixer contained in the lower part. A calibrated diaphragm at the inlet of the lower body defines the nominal mix percentage.

pressure.

Adjustable mixing rate

The drawing on the right side shows the mixer including a mixing ratio adjustment valve, which is inserted between the lower Venturi body and the valve section.

This valve, machined with high precision, assures a proportional regulation of the foaming agent flow. It is then possible to use a mixer designed to assure a 6% ratio with foaming agents requiring lower percentage ratios.

These mixers have been awarded a RINA Type Approval Certificate, whose certificate is available on request.

Materials Mixer body

Venturi nozzle

Mix ratio valve

Automatic valve parts

Cast iron Bronze AISI 316 stainless steel Bronze AISI 316 stainless steel Body carbon steel Ball AISI 316 stainless steel

Cada	Capacity	L	н	H1	L2	L3	FS	FA	w	H2*	W*
Code	lpm	mm	mm	mm	mm	mm	inch	inch	kg	mm	kg
TFA 1003 G1SE	216 / 2160	205	504	210	296	100	1+1/2	4	50	275	58
TFA 1253 G1SE	325 / 3250	250	516	220	296	100	1+1/2	5	58	290	66
TFA 1503 G1SE	475 / 4750	300	572	265	345	115	2	6	65	355	75
TFA 2003 G1SE	850 / 8700	400	592	286	345	115	2	8	90	375	100
TFA 2503 G1SE	1366 / 13660	500	656	213	431	145	2+1/2	10	130	420	142
TFA 3003 G1SE	1916 / 19160	602	684	342	431	145	2+1/2	12	180	450	182
TFA 3503 G1SE	2533 / 25330	692	702	358	431	145	2+1/2	14	215	465	230
	1	1			1	1	1	1		1	1

* When fitted with percentage adjustment valve

Mix percentage

The codes given in the above table refer to a mix percentage of 3%. Please refer to following page for complete coding information.

It is required for a correct operation that the foaming agent pressure is about 2 bar higher than the expected water

on request on request

FOAM MIXER

62

NG

0

Balanced pressure proportioner

FOAM MIXER

Wide Range proportioner

number of spray devices can be totally or partially required in use. The mixer is built up from totally machined parts without castings, which makes it possible a construction in bronze, stainless steel and any other special alloy.

The lower part including the Venturi profile mixing area has a wafer design, that allows an easy assembly with flanges of any type.

Materials Body	Gun metal AISI 316L stainless steel								
Inner parts	AISI 316 stainless steel								
Cada	Α	В	D1	D2					
Code	mm	mm	inches	inches					
TFR 1003 T1SE	70	210	4	2					
TFR 1503 T1SE	70	240	6	2					

82

82

290

322

8

10

3

3

Coding information

The codes for these products show a digit giving mix percentage, which can be modified as follows.

TFA 1003 G1SE	TFA 1006 G1SE
Mix 3%	Mix 6%

TFA 100R G1SE Mix adjustable

Pressure drop diagram for URD mixers

User manual

A complete user manual, including service instructions and spare parts list is available at our offices upon request and at no cost for our customers.

TFR 2003 T1SE

TFR 2503 T1SE

This very special mixer offers a very extended capacity range and is expressly designed for such systems where a large

Capacity	Press. drop	Ratio	К	W	
Ipm	bar	%	factor	kg	
80/2450	0,2 - 2	3	2.038	15	
110/5500	-	-	4.560	23	
125/10500	-	-	8.640	39	
150/16000	-	-	13.000	48	

SMALL CAPACITY MIXERS

The same principle of the bladder tank can also be applied to build smaller devices for special applications in restricted spaces.

A typical application is the protection of railway or highway tunnels, by locating one device at predetermined distances along the tunnel section to be protected.

Such devices are delivered complete with Venturi mixers, and all necessary valves in the water inlet line, mix exit line and the two filling lines.

General specification, manufacturing norms and construction materials are the same as listed at page 13 for bigger models.

Capacities available are for 25 and 50 litres. All valves made out of nickel plated brass.

Options Body Stainless steel Flange connections

MONITORS

Since many years Pnr manufactures high quality monitors, showing a perfect inside surface finish which allows for superior values of throw. In addition our range is a very complete one and covers all the requirements for professional fire-fighting systems,

including the most sophisticated remote control models.

Our range of monitors is shown in the following pages and organized in different groups, by type of monitor operation. Accessories and equipment related to monitors like poles are shown at the end of this section.

SELF OSCILLATING MONITOR

These models are operated by the classic water turbine device, taken to perfection through years of continuous

Wall construction

For added convenience these small capacity mixers can be delivered pre-assembled in a steel box containing an hose reel for being mounted on a wall as a self-contasined unit. Please ask for detailed information.

HYDRAULIC DRIVE MONITORS

0114108 Point Instein # 28

62 <u>---</u>

Q

MANUAL COMMAND

e in anv possil

ELECTRIC DRIVE MONITORS

MONITORS / CAST BODY

Lever control

The monitor shown in this page are cast in bronze, without any welding, and mostly required for operation under marine conditions and operation with sea water.

These monitors are supplied only for manual operation and can be locked in position by means of locknuts with hand wheel on both bearings.

The hand lever is made out of AISI 316 stainless steel, with a grip handle and a locking nut.

Both ball bearings are built with stainless steel balls and fitted with a grease nipple.

The same 3" monitor is available with a 3" or a 4" connection flange, while the outlet connection is in both cases a square flange.

Specifications and materials

Body material	Bronze
Connection flange	ASTM A 105 ANSI 150 R
Rotation angle	360°
Operation pressure max	12 bar
Design pressure	16 bar
Test pressure	23 bar
Operation temperatures	- 20°C + 60°C
Surface coating	Epoxy paint RAL 3000

Cada	Body	D1	Q	Α	В	С	E	Capacity	Weight
Code	inches	inch	mm	mm	mm	mm	mm	Ipm	kg
TMM 080L B3ME	3 "	3 "	125	340	145	615	249	4.000	40
TMM 100L B3PE	3 "	4 "	125	340	145	615	249	4.000	41

Options available

Base flange Base flange material Base flange Elevation angle Special model Body material DIN norms AISI 316 with automatic drainage 85° ATEX compliant AISI 316

MONITORS / WELDED BODY General specification

Our wide range of welded monitors includes many possible combinations. We have gathered in this page the performance data of the whole range of monitors, and arranged in the following pages the information relating to the precise identification of each single type.

MONITOR BODY SIZE 2+1/2 INCHES

Specifications	Capacity	Inlet	Body	Outlet	Weight								
	Lpm	inch	inch	inch	kg								
	2.000	2,5/3	2	2+1/2	15								
Pressure drops at partial loads		Press dro	Press drop (bar) vs flow (Ipm)										
		500	1000	1500	2000								
		0.16	0.37	0.65	1.00								
Recoil Forces (Kg) for different p	oressures	Flow Operation pressure (bar)											
and flow values		Lpm	5	6	7	8	9	10	11	12			
		500	25	32	39	46	53	61	69	77			
		1000	40	55	70	85	100	115	130	145			
		1500	75	85	100	115	130	145	160	185			
		2000	85	110	128	141	160	180	200	215			

MONITOR BODY SIZE 3 INCHES

Specifications	Capacity	Inlet	Body	Outlet	Weight								
	Lpm	inch	inch	inch	kg								
	4.000	3/4	3	3	21								
Pressure drops at partial loads		Press dro	Press drop (bar) vs flow (lpm)										
		2000	3000	3500	4000								
		0.35	0.62	0.80	1.00								
Recoil Forces (Kg) for different p	ressures	Flow	Flow Operation pressure (bar)										
and flow values		Lpm	5	6	7	8	9	10	11	12			
		2000	90	115	132	150	170	190	210	225			
		3000	145	160	200	225	250	280	310	340			
		3500	165	200	240	275	300	335	360	390			
		4000	185	215	260	300	335	375	410	450			

MONITOR BODY SIZE 4 INCHES

	Specifications	Capacity <i>Lpm</i>	Inlet inch	Body inch	Outlet inch	Weight <i>kg</i>							
		7.000	4/6	4	4	31							
	Pressure drops at partial loads		Press drop (bar) vs flow (lpm)										
			4000	5000	6000	7000							
			0.37	0.52	0.70	1.00							
	Recoil Forces (Kg) for different pressures and flow values		Flow Operation pressure (bar)										
			Lpm	5	6	7	8	9	10	11	12		
			4000	180	220	260	300	340	380	420	460		
			5000	235	280	325	380	425	475	520	570		
			6000	265	310	370	415	475	525	580	640		
			7000	280	345	400	450	510	560	620	675		

26

Lever control

62

72

പ

Q

The monitor shown in this page are built according with the specifications given at page 27, in three different sizes, these monitors are supplied only for manual operation through a lever and can be locked in position by means of locknuts with hand wheel on both bearings.

The hand lever is fitted with a grip handle and a locking nut.

The single models are available with a different sizes for inlet flanges, while the outlet connection is always obtained through a male BSP thread on the outlet pipe.

Cada	Pipe	Inlet	Outlet	Capacity	Weight	Α	В	С	D
Code	size	flange	thread	Ipm	kg	mm	mm	mm	mm
TMM 065V B3LE	2+1/2	2+1/2	2+1/2	2000	15	320	552	160	400
TMM 065V B3ME		3				320	552	160	400
TMM 080V B3ME	3	3	3	4.000	21	375	552	190	460
TMM 080V B3PE		4				375	552	190	460
TMM 100V B3PE	4	4	4	7000	31	460	700	230	600
TMM 100V B3QE		5				460	700	230	600
TMM 100V B3RE		6				460	700	230	600

Materials

Body (pipes and joints) Swivel balls Inlet flange **Operation** lever Surface coating

AISI 316 stainless steel Phosphorus bronze DIN ND16 Carbon steel (AISI 316 / ANSI 150 as an option) AISI 316 stainless steel Epoxy / Polyurethane red RAL 3000

Operation pressure

Design pressure Operation pressure (recommended)

16 bar 12 bar

Operation pressure

Design pressure Operation pressure (recommended)

Phosphorus bronze AISI 316 stainless steel Epoxy / Polyurethane red RAL 3000

AISI 316 stainless steel

12 bar

16 bar

MONITORS / WELDED BODY

Hand wheel control

The monitor shown in this page are built according with the general specifications given at page 27, in two different sizes. These monitors are supplied only for manual operation through one or two hand wheels. The model with hand wheel control on elevation only can be locked in any horizontal position by means of a locking handle on the lower bearing.

The hand lever is fitted with a grip handle and a locking nut. The single models are available with a different sizes for inlet flanges, while the outlet connection is always obtained through a male BSP thread on the outlet pipe.

One hand wheel model

Codo	Pipe	Inlet	Outlet	Capacity	Weight
Code	size	flange	thread	lpm	kg
TMM 300V B3ME	3	3	3	4.000	32
TMM 300V B3PE		4			
TMM 400V B3PE	4	4	4	7.000	36
TMM 400V B3QE		5			
TMM 400V B3RE		6			

Two hand wheels model

Codo	Pipe	Inlet	Outlet	Capacity	Weight
Code	size	flange	thread	lpm	kg
TMM 300W B3ME	3	3	3	4.000	32
TMM 300W B3PE		4			
TMM 400W B3PE	4	4	4	7.000	36
TMM 400W B3QE		5			
TMM 400W B3RE		6			

Materials

Body (pipes and joints) Swivel balls Inlet flange **Operation** lever Surface coating

CTG FF10 IT

28

DIN ND16 Carbon steel (AISI 316 / ANSI 150 as an option)

Self oscillating type

The monitor shown in this page are built according with the general specifications given at page 27, in two different sizes. These monitors are fitted with a water self oscillating system which provides movement in the horizontal xx plane and an adjustable upper joint with hand wheel for elevation control.

The lower bearing can be fitted with cam handle or hand wheel, which makes it possible to disassemble the self oscillating unit in case of malfunction and still keep a fully efficient monitor in service.

The single models are available with a different sizes for inlet flanges, while the outlet connection is always obtained through a male BSP thread on the outlet pipe.

See oscillating unit specification and data on next page.

One hand wheels model

Code	Pipe	Inlet	Outlet	Capacity	Weight
	size	flange	thread	lpm	kg
TMA 080V B3ME	3	3	3	4.000	49
TMA 080V B3PE		4			
TMA 100V B3PE	4	4	4	5.000	54
TMA 100V B3QE		5			
TMA 100V B3RE		6			

Two hand wheels model

Code	Pipe	Inlet	Outlet	Capacity	Weight
	size	flange	thread	Ipm	kg
TMA 080W B3ME	3	3	3	4.000	52
TMA 080W B3PE		4			
TMA 100W B3PE	4	4	4	5.000	57
TMA 100W B3QE		5			
TMA 100W B3RE		6			

Materials

Body (pipes and joints)
Swivel balls
Inlet flange
Surface coating

AISI 316 stainless steel Phosphorus bronze DIN ND16 Carbon steel (AISI 316 / ANSI 150 as an option) Epoxy / Polyurethane red RAL 3000

Operation pressure

Design pressure Operation pressure (recommended) 16 bar 12 bar

MONITORS / WELDED BODY

Self oscillating unit

Our self oscillating unit is based onto the classical design where a water driven turbine wheel supplies the energy to rotate the monitor through a gear train.

Our long experience, which has been built over thousands of units supplied in the last thirty years, makes it possible to reach a very high degree of reliability in operation together with the very good resistance to weather conditions obtained by the choice of the best quality materials and surface treatment.

This unit can be retro fitted to each one of our standard hand control monitors in order to change it into a self oscillating one, or can be disassembled from a self oscillating one in case of malfunction still leaving the monitor fully available albeit with hand control.

Waterials	
Body (pipes and joints)	AISI 316 stainless steel
Swivel balls	Phosphorus bronze
Inlet flange	DIN ND16 Carbon stee
Surface coating	Epoxy / Polyurethane r
Specification	
Design pressure	16 bar
Operation pressure	10 Bal
(recommended)	12 bar
Water requirement (7 bar)	20 lpm
Rotation rate (7 bar)	5° per second
Rotation range	15° to 360°
Weight	18 kg
Maximum water capacity (7 bar)	5.000 lpm
Inlet flange	3" / 4"

Many optional designs are available, like monitors with an elevation joint only, or with hand lever control, whose specifications are available to our customers upon request.

30

CTG FF10 IT

Matorial

el (AISI 316 / ANSI 150 as an option) red RAL 3000

Electric powered type

62

72

പ

The monitor shown in this page are built according with the general specifications given at page 27, in the two different sizes with a capacity of 4.000 and 7.000 lpm. These monitors are fitted with two electric motors which provide movement to the direction and elevation swivel joints, allowing therefore complete remote control for the monitor.

Both electric drive units are fitted with an emergency hand wheel in case of malfunction.

The single models are available with different sizes for inlet flanges, while the outlet connection is always obtained through a male BSP thread on the outlet pipe.

Codo	Pipe	Inlet	Outlet	Capacity	Α	В	С	D	Weight
Code	size	flange	thread	lpm	mm	mm	mm	175 205	kg
TMA 080E B3ME	3	3	3	4.000	590	640	665	175	73
TMA 080E B3PE		4							
TMA 100E B3PE	4	4	4	7.000	680	700	630	205	83
TMA 100E B3QE		5							
TMA 100E B3RE		6							

DIN ND16 Carbon steel (AISI 316 / ANSI 150 as an option)

Materials

Body (pipes and joints) Swivel balls Inlet flange Gear casing Surface coating

Specification

Electric motors E-motors Rotation speed E-power required Limit switches E-iunction box Max direction angle Max elevation range

Operation pressure

Design pressure	
Operation pressure	
(recommended)	

Optional construction

Several options are available on these products:

- · E-motors with different voltage
- Electric limit switches
- · Limited elevation and rotation ranges as requested within above said values

AISI 316 stainless steel

Three-phase 230-400 V

16 degrees per second

0,25 Kw IP55

Stainless steel

With safety clutch

+ 85 / - 60 degrees

0,5 Kw

340°

16 bar

12 bar

Light alloy, sea worthy anodised

Epoxy / Polyurethane red RAL 3000

Phosphorus bronze

- Stainless steel connection flange
- ATEX version

Hydraulic powered type

MONITORS / WELDED BODY

The monitor shown in this page are built according with the general specifications given at page 27, in the two different sizes with a capacity of 4.000 and 7.000 lpm. These monitors are fitted with two hydraulic motors which provide movement to the direction and elevation swivel joints, allowing therefore complete remote control for the monitor. Both hydraulic drive units are fitted with an emergency hand wheel in case of malfunction. The single models are available with different sizes for inlet flanges, while the outlet connection is always obtained through a male BSP thread on the outlet pipe.

Code	Pipe	Inlet	Outlet	Capacity	Α	В	С	D	Weight
	size	flange	thread	lpm	mm	mm	mm	mm	kg
TMA 080H B3ME	3	3	3	4.000	590	620	510	175	63
TMA 080H B3PE	3	3	3		690	620	510	175	73
TMA 100H B3PE	4	4	4	7.000	680	680	540	205	68
TMA 100H B3RE	4	6	4		780	780	540	205	78

Codes and Data in Italics refer to optional 360° rotation models

Materials

Body (pipes and joints) Swivel balls Inlet flange Gear casing Surface coating

AISI 316 stainless steel Phosphorus bronze DIN ND16 Carbon steel (AISI 316 / ANSI 150 as an option)

Specification

Rotation speed Oil pressure Required oil capacity Max direction angle Max elevation range

Light alloy, sea worthy anodised Epoxy / Polyurethane red RAL 3000

40 / 60 bar (or higher, ask our offices) 180 lpm 340° + 85 / - 50 degrees

16 bar

12 bar

Operation pressure

Design pressure Operation pressure (recommended)

Optional construction

Several options are available on these products:

- · Limit switches to reduce rotation angle
- Limited elevation and rotation ranges as requested within above said values
- Stainless steel connection flange
- Rotation over 360°, see coding below
- · Compact design, see coding below

8 degrees per second (increases with oil pressure)

End devices / Adjustable nozzles

Adjustable jet nozze

62

72

പ

These nozzles can be fitted through their female thread connection directly onto the monitor pipe, and produce a variety of jets with different spray angles, from a powerful straight jet to a very wide angle one. The last three columns on the right of table show the weight of same model for different materials

Materials	V1 B31	Aluminum AISI 316 Stainless steel		250
	15	bronze	00	
				Fulliet
	Ľ			
	5		00	
			Max	imum opening - Fog jet

Capacity (Ipm) at pressures					Α	В	С	alfa	B3	T5	V1		
Code		bar					mm	mm	inch	deg	kg	kg	kg
	5	6	7	8	9	10							
TBM 0150 T5LG	1230	1400	1500	1600	1700	1780	203	170	2+1/2	110	*	6,8	2,5
TBM 0200 T5LG	1600	1950	2000	2080	2150	2210							
TBM 0250 T5LG	2200	2350	2500	2630	2700	2715							
TBM 0300 B3MG	2650	2800	3000	3100	3200	3250	203	170	3"	110	8.0	8.0	*
TBM 0400 B3PG	3200	3600	4000	4300	4500	4700	250	200	4"	110	10	10	*
TBM 0500 B3PG	4200	4600	5000	5300	5600	5800							
TBM 0600 B3PG	5100	5500	6000	6300	6600	6800							

Throw specification

The following table lists the throw distance in meters of the above nuzzle models for different operation pressure values in bar

Code	Throw length (m) at different pressures (bar)										
Code		5	6	7	8	9	10	11	12		
TBM 0150 T5LG	2+1/2	46	48	54	57	59	60	61	62		
TBM 0200 T5LG		48	54	57	60	63	64	65	66		
TBM 0250 T5LG		54	57	62	64	67	68	70	70		
TBM 0300 B3MG	3"	65	67	70	72	75	76	77	78		
TBM 0400 B3PG	4"	65	69	71	74	76	78	80	81		
TBM 0500 B3PG		70	73	75	77	79	82	83	84		
TBM 0600 B3PG		75	78	81	83	86	88	89	90		

MONITORS / WELDED BODY

End devices / Adjustable nozzles

Adjustable jet nozzle, water / foam

These nozzles can be fitted through their female thread connection directly onto the monitor pipe, and produce a variety of jets with different spray angles, from a powerful straight jet to a very wide angle one. A pick-up hose at the bottom allows for foam agent to be sucked by an internal Venturi mixer and injected into the water stream with different percentages [0 - 3 - 6]. Foam is then produced, with a normal expansion ratio of 1:4, depending upon foam agent.

The last three columns on the right of table show the weight of same model for different materials

Materials	T5	Bronze	
-----------	----	--------	--

Code	Capacity (Ipm) at pressures bar						A mm	B mm	C inch	alfa deg	T5 kg
	5	6	7	8	9	10					
TBM 0151 T5LG	1230	1400	1500	1600	1700	1780	203	170	2-1/2	110	7.8
TBM 0201 T5LG	1600	1950	2000	2080	2150	2210					
TBM 0251 T5LG	2200	2350	2500	2630	2700	2715					
TBM 0401 B3PG	3200	3600	4000	4300	4500	4700	250	200	4"	110	12
TBM 0501 B3PG	4200	4600	5000	5300	5600	5800					

Throw specification

Code			Throw length (m) at different pressures (bar)											
		5	6	7	8	9	10	11	12					
TBM 0151 T5LG	2+1/2	39	41	46	47	48	49	49	49					
TBM 0201 T5LG		41	46	48	49	52	52	53	53					
TBM 0251 T5LG		46	48	53	54	55	56	57	57					
TBM 0401 B3PG	4"	55	58	60	62	64	66	67	68					
TBM 0501 B3PG		59	61	63	65	67	69	70	71					

Pick-up hose

Pick-up hose body is made out of heavy thickness PVC reinforced with an internal stainless steel wire spiral. Connection to injection valve is normally through a UNI 25 (1") quick coupling, while other connection styles can be supplied as an option.

6. T. I.	
10 m	
un faite	
Carl Linear	
12.2.2 Barrier 12.2	
0.001	
K. (.) (.)	

The following table lists the throw distance in meters of the above nuzzle models for different operation pressure values in bar

62

<u>---</u>

Q

End devices / Adjustable nozzles

Our adjustable nozzles, in the 3" and 4" sizes as shown in the previous pages, can be fitted with power units so as adjust their jet with remote control. Our range includes two different types.

Electric powered

Here the nozzle is powered by an electric motor coupled with a gear box and an emergency hand wheel. The moving parts are protected by an expansion part in rubber.

Specification

Electrical parts protection degree	IP55
Power unit design pressure	16 ba
E-motor	Three
Surface coating painted parts	Ерох
Surface coating gear case	Sea

bar ree-phase, 230 / 400 V 0.36 Kw boxy / polyurethane cycle RAL 3000 ea worthy anodising

Options

Following options are available E-motors with any desired voltage Limit switches EexD (Atex) models

Codes for e-powered nozzles

Shall be supplied on request.

Hydraulic powered

Hydraulic powered nozzles include an hydraulic cylinder fed from the existing hydraulic system in hydraulic powered monitors, with the moving rod protected by an expansion rubber cover.

Specification

Design pressure Hydraulic cylinder Surface coating not required 16 bar Stainless steel

Codes for hydraulic powered nozzles Shall be supplied on request.

MONITORS / WELDED BODY

End devices / Water lances

from 2+1/2" to 4".

Materials

Lance body Nozzle

AISI 316 stainless steel Light alloy, anodised*

Options Bronze nozzle

Capacity table

Cada			Cap	acity (Ipm) at press	ures			Α	D	Weight
Code			mm	inch	kg						
	5 6 7 8 9 10 11 12										
TLH 0100 B3LG	850	925	1000	1075	1150	1225	1300	1375	800	2+1/2	7.5
TLH 0150 B3LG	1350	1425	1500	1575	1650	1725	1800	1875			
TLH 0200 B3LG	1700	1800	2000	2100	2200	2350	2500	2700			
TLH 0250 B3MG	2050	2250	2500	2700	2900	3050	3200	3350	800	3"	10
TLH 0300 B3MG	2550	2750	3000	3200	3400	3600	3800	4000			
TLH 0400 B3MG	3300	3600	4000	4200	4600	4800	5000	5200			
TLH 0500 B3PG	4200	4600	5000	5400	5800	6000	6300	6600	950	4"	11
TLH 0600 B3PG	5000	5500	6000	6500	6800	7000	7400	7600			

Throw specification

The following table lists the throw distance in meters of the above lance models for different operation pressure values in bar

Codo				Throw leng	gth (m) at di	fferent pres	sures (bar)		
Code		5	6	7	8	9	10	11	12
TLH 0100 B3LG	2+1/2	36	38	44	48	50	51	54	56
TLH 0150 B3LG		38	44	48	51	53	55	58	60
TLH 0200 B3LG		48	51	54	58	61	63	66	68
TLH 0250 B3MG	3"	56	58	60	62	63	65	68	74
TLH 0300 B3MG		64	66	69	70	72	74	77	79
TLH 0400 B3MG		66	68	70	71	74	76	81	88
TLH 0500 B3PG	4"	72	76	78	80	84	86	91	94
TLH 0600 B3PG		86	79	81	83	85	88	101	106

Our range for water lances covers the whole dimension range from our monitors, with female BSP thread connections

End devices / Water / Foam lances

Our range for water / foam lances covers a range from 2.500 to 7.000 lpm (nominal values at 7 bar), with female BSP thread connections from 3" to 5".

Materials Lance body

62

72

പ

Nozzle

AISI 316 stainless steel Light alloy, anodised*

Options Brass nozzle

Option Foam lances can be supplied equipped with jet shaping device. Contact our offices for proper coding

Capacity table

Cada			Cap	acity (Ipm) at press	ures			Α	D	Weight		
Code			mm	inch	kg								
	5 6 7 8 9 10 11 12												
TLF 0100 B3LG	800	900	1000	1100	1150	1200	1250	1300	1000	2+1/2"	8.0		
TLF 0150 B3LG	1200	1290	1500	1580	1640	1730	1850	1960		+	8.0		
TLF 0200 B3LG	1660	1725	2000	2070	2150	2230	2350	2515		+	8.0		
TLF 0250 B3MG	2000	2250	2500	2560	2630	2785	2925	2935	1000	3°"	8.0		
TLF 0300 B3MG	2500	2650	3000	3135	3250	3500	3630	3800	1150	0	11		
TLF 0350 B3MG	2850	3300	3500	3700	3850	3950	4020	4100	1150	0	11		
TLF 0400 B3MG	3300	3600	4000	4250	4600	4800	5000	5100	1150	0	13		
TLF 0500 B3PG	4150	4300	5000	5350	5860	6000	3150	6300	1300	4"	14		
TLF 0600 B3PG	5000	5500	6000	6300	6700	7000	7250	7380		*			
TLF 0700 B3PG	6000	6500	7000	7400	7800	8200	8700	9000		*			

When ordering one of the above lances fitted with jet shaping device please use TLM code instead of TLF. Example TLF 0100 B3LG = standard model / TLM 0100 B3LG = lance fitted with jet shaping device.

Throw specification

The following table lists the throw distance in meters of the above lance models for different operation pressure values in bar

Code		Throw length (m) at different pressures (bar)												
		5	6	7	8	9	10	11	12					
TLF 0100 B3LG	2+1/2	31	33	38	41	43	45	47	53					
TLF 0150 B3LG		35	41	48	50	53	56	60	64					
TLF 0200 B3LG		42	48	53	60	63	68	70	74					
TLF 0250 B3MG	3"	45	54	59	63	66	68	74	78					
TLF 0300 B3MG		54	58	61	65	67	70	76	80					
TLF 0350 B3MG		55	61	63	66	69	71	78	81					
TLF 0400 B3MG		57	64	68	70	75	80	82	83					
TLF 0500 B3PG	4"	64	67	71	74	78	82	84	85					
TLF 0600 B3PG		66	70	74	77	80	83	85	86					
TLF 0700 B3PG		71	75	78	80	84	86	88	90					

Note:

- + also available with 3" connection: contact our offices for proper coding
- also available with 4" connection: contact our offices for proper coding
- * also available with 5" connection: contact our offices for proper coding

MONITORS / WELDED BODY

End devices / Water/Foam lances / Self-aspirating

This range of self-aspirating water foam lances covers a range from 1.000 to 3.500 lpm (nominal values at 7 bar), with female BSP thread connections from 2+1/2" to 4". A proportioning value on the lance bottom, with different percentages [0 - 3 - 6], is connected through a quick coupling to the suction hose for the foam agent. Foam is then produced, with a normal expansion ratio of 1:4, depending upon foam agent.

Materials

Lance body Nozzle Suction hose Suction devices AISI 316 stainless steel Bronze PVC, internal steel spiral Light alloy, anodised

Options Suction devices

Bronze

Capacity table

Cada			А	D	Weight						
Code			mm	inch	kg						
	5	6	7	8	9	10	11	12			
TLF 0101 B3LG	800	900	1000	1100	1150	1200	1250	1300	1200	2+1/2"	10
TLF 0151 B3LG	1200	1290	1500	1580	1640	1730	1850	1960		+	10
TLF 0201 B3LG	1660	1725	2000	2070	2150	2230	2350	2516		+	10
TLF 0251 B3MG	2000	2250	2500	2560	2630	2785	2925	2935	1200	3"	10
TLF 0301 B3MG	2500	2650	3000	3135	3250	3500	3630	3800	1300	o	13
TLF 0351 B3MG	2800	3300	3500	3700	3850	3950	4020	4100	1300	0	13

Throw specification

The following table lists the throw distance in meters of the above lance models for different operation pressure values in bar

Code		Throw length (m) at different pressures (bar)											
		5	6	7	8	9	10	11	12				
TLF 0101 B3LG	2+1/2	31	33	38	41	43	45	47	53				
TLF 0151 B3LG		35	41	48	50	53	56	60	64				
TLF 0201 B3LG		42	48	53	60	63	68	70	74				
TLF 0251 B3MG	3"	45	54	58	63	66	68	74	78				
TLF 0301 B3MG		52	58	61	65	67	70	76	80				
TLF 0351 B3MG		55	61	63	66	69	71	78	81				

Note:

+ also available with 3" connection: contact our offices for proper coding ° also available with 4" connection: contact our offices for proper coding

Platform towers

NOTES

Platform design A variety of platforms, either fixed or rotating can be supplied on customer specification. Our platform are designed to host monitors working at 16 bar, normally being operated at 12 bars. The steel structure is designed to withstand wind velocity of 130 km/h, and weighs in the usual height of 10 meters 1670 kg.

Materials Structure

PNR

Q

Surface treatment

Carbon steel Epoxy paint RAL 3000

Options Surfcae treatment Tpwer height

Hot dip galvanizing To customer specification

Q

NOTES

					<u> </u>					

PNR PRODUCT RANGE

Besides its main range of nozzles for industrial applications, PNR manufactures a wide range of complementary products and systems to optimize the use of spray jets and fluids control in most of the modern industrial processes.

CTG UG

Spray nozzles for industrial applications

One of the world most complete lines of nozzles for numberless industrial applications. Nozzles with a wide openings range, various types of vanes, several spray patterns, anti-clog design, available in small and big dimensions and made in many food-grade materials like PFTE and Stainless Steel 316L with threaded and flanged connections

CTG SP

Spraydry nozzles

Air assisted or hydraulic high pressure atomizers, made in high-quality metal alloys or tungsten carbide.

A complete line of nozzles for the modernization of existing facilities at competitive prices. To ensure highly accurate results and a long service life, these nozzles are manufactured with the finest materials and technologically advanced machines.

CTG LS

Tank washing systems

A complete range, from simple fixed washing heads to the two-axis heads, from mushroom nozzles to fluid driven reaction heads, up to the motor driven washing heads, equipped with a pneumatic or electric motor.

All for the inside cleaning of industrial tanks according to the latest technology, accessories included.

Paper mill products

A line of products specifically designed for perfect results on paper mill machines, including disc nozzles patented for self-cleaning filters, flat jet nozzles with orifices in sapphire, ruby and ceramic, oscillating tubes equipped with a computer driven motor.

CTG AC

Complementary Products and Assembly Fittings

A complete line of nipples, clamps, swivel joints and everything that helps you to assemble, align and service your spraying systems, quickly and easily. Air blowers, mixing eductors, filters, cleaning guns and lances, hose reels, steam heaters, pressure tanks, quick couplings to help you build up a profes-

sional system upgraded to the latest

CTG SW

Steelwork nozzles

A complete line of nozzles for steelwork applications, including continuous casting air atomizers and conventional nozzles, descaling nozzles for high pressure systems, dovetail tips for cylinders cooling and high capacity flanged nozzles for coke quenching.

CTG AZ

Air assisted atomizers

standards.

Ultrasonic, classic and automatic atomizers for the finest atomization in any insustrial process. High quality machining and strict quality control ensure your systems top professional results.

Programming and control panels for an easy assembly of complete humidification systems. CTG LN

Gas cooling lances

Spillback or air assited lances for gas cooling in steelworks, cement plants and other industrial applications.

We can supply spare parts, upgrade your plant and even supply a complete PLC driven system to enhance the towers performances to the highest efficiency level allowed by today technology.

CTG FF10 BR

www.pnr-nozzles.com

Our products are distributed through:

PNR America **PNR** Asia **PNR Baltic PNR Benelux**

PNR China PNR Czech Republic **PNR Deutschland PNR France**

PNR Italia **PNR Mexico** PNR U.K.

We are also represented in:

Argentina Australia Austria Brazil Bulgaria Canada Chile Croatia Denmark Finland Greece

India Indonesia Iran Ireland Korea Malaysia Norway New Zealand Pakistan Philippines Poland Portugal

Rumenia Russia Serbia Singapore Slovenja Spain South Africa Sweden Taiwan Turkey Venezuela

STAMPATO IN EU 12/10 @ Bell&Tany